

BARING BRIDGE #509A

KING COUNTY LANDMARKS COMMISSION BRIEFING

October 22, 2020

PROJECT' LOCATION

- On Index Creek Road near town of Baring and US Route 2
- Timber suspension bridge over the South Fork of the Skykomish River

Activity since last meeting

- August 2019 Final Bridge Type, Size & Location (TS&L) completed
- September 2019 Bridge listed in the National Register of Historic Places
- February 2020 Completed Section 106 Inventory
- March 2020 Began Final Design Phase
 - Geotechnical Borings
 - Geomorphic Survey
 - Hydraulic Report
 - Traffic Impact Analysis
 - Currently in 60% Design

Baring Bridge # 509A

BRIDGE HISTORY

photo taken by Asahel Curtis (~1910)

1899	Constructed as a mining bridge by private company
1911	Entered county inventory. Complete reconstruction of the bridge by Baring Cedar Company at county expense
1921	First record in county inspection log, closed to vehicles
1923	Pedestrians only, note in record
1924	Bridge closed by order of county
1930	New suspension bridge built on current location
1938	Bridge posted at 4 tons load limit
1948	Load limit reduced to 3 tons
1952	Bridge collapsed and rebuilt
1995	Load limit raised to 10 tons (20,000 pounds) Gross Vehice Weight following substantial upgrade
1999	Designated a King County Landmark for both

association with historic events (mining, logging) and the embodiment of a distinctive engineering type (timber

suspension bridge)

REPAIR AND REHABILITATION HISTORY

1950	Repair of sills, cables and deck
1953	Truss stiffened, new decking, new anchorages
1958	Timber towers reconstructed
1962	Deck replaced

- 1976 Second pair of main cables added and with new anchorages, replaced North approach
- Floorbeams, stringers, decking, and railings replaced in kind. Suspender rods replaced with cables.
- 1995 Bridge strengthening with new floorbeams, decking, concrete anchors, new high strength hangers, and new bridge rail system.
- 1999 Added steel brackets to tower caps, tower repairs
- 2010 Replaced a column and foundation sills at North Tower
- 2015 Upgraded cable support brackets at the tower caps
- 2017 Emergency repair with replacement of stringers, new decking, steel banding timber floorbeams, and tower timber reinforcement
- 2018 Mudsill repairs at piers 3 and 5
- 2020 Completed a temporary scour repair and tower timber reinforcement

Photo of rail post-repair (1950)

DESIGN CONSIDERATIONS

- Access during construction
- > Hydraulic (flood plain/floodway) constraints for pier placement
- King County Historic Landmark
- Community input on location and bridge type
- Aesthetics context sensitivity, proper fit for setting
- Environmental impacts and mitigation requirements
- Geometry of alignment and profile of approach roadways
- Challenging geotechnical and artesian aquifer conditions
- Minimizing right-of-way impacts
- Construction risks and temporary staging
- Construction duration
- Construction cost
- Bridge life cycle costs (maintenance, repair and inspection costs)

Selected Structure and Alignment

Structure

Steel Truss Bridge

Alignment

Build at existing location Remove existing bridge

Proposed Bridge Plan and Elevation

- Single lane and pedestrian facilities on Bridge with potential to reconfigure to 2 lanes
- Two lanes on approaches
- Clearance over flood plain
- Designed to meet all legal loads

Current Project Schedule

PLANNED NEXT STEPS

Review 60% design

- Review Draft Geotech/Geomorphic Report
- Apply for Type III Certificate of Appropriateness

Mitigation Ideas

- Reuse of main cable(s) as decorative element on pedestrian railing
- Paint truss unobtrusive color (National Park Service Brown)
- Weathering steel railings on bridge and approaches
- Pedestrian accessible interpretive signage
- Donate funds to the King County Landmarks Commission
- HistoryLink webpage
- Community event

THANK YOU